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Abstract

A three-dimensional adaptive strategy for the finite element simulation of phase change problems is presented, dis-

cussed and validated. A semi-phase-field formulation is used for the solution of the Stefan problem. The adaptive

method is based on the definition of edge length using a solution dependent metric and produces strongly anisotropic

meshes. Numerical results illustrating the performance and accuracy of the proposed method are presented.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The two-phase Stefan problem can be used to model phase change in various applications. The compu-

tational domain X is three-dimensional and consists of solid and liquid phases Xs and Xl separated by a

moving interface C which is located on the isotherm T = Tf (Tf being the melting temperature). The Stefan

problem can be written as
0021-9

doi:10.

* Co

E-m
qici
oT
ot
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where Ki is the thermal conductivity tensor (W/m K), qi is the density (kg/m3), ci is the specific heat (J/kg K)

and fi is a possible heat source (W/m3). At the interface C between the phases, the temperature T (in K) is

continuous and a heat balance equilibrium condition must also be enforced on C which takes the form
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ðK s$T Þ � ns þ ðK l$T Þ � nl ¼ qlLV C on C;
where L is the latent heat of fusion (J/kg) and VC is the interface normal velocity (m/s). This last relation is
known as the Stefan condition.

Solving this problem is not an easy task, specially in the three-dimensional case. The imposition of the

heat balance boundary condition impose to precisely locate the position of the interface. In Belhamadia

et al. [1], a two-dimensional adaptive strategy based on the introduction of a hierarchical error estimator

was used in conjunction with a so-called semi-phase-field formulation of the Stefan problem. Many two-

dimensional test cases were successfully solved showing the potential of the method. It was clearly shown

that anisotropic meshes are particularly efficient to determine the position of the evolving interface. It also

allows to reduce substantially the number of elements necessary to obtain accurate results, both for the tem-
perature and freezing front position. The main focus of this paper is to extend the methodology introduced

in Belhamadia et al. [1] to three-dimensional problems. A different error estimator will be used which is

based on the definition of edge length using a solution dependent metric as described in a series of papers

by Habashi and co-workers [2–4].

The layout of this paper is as follows: in the next section the semi-phase-field model is briefly recalled.

Section 3 is devoted to a description of the adaptive strategy and the numerical results are presented in Sec-

tion 4. The numerical examples are three-dimensional generalizations of classical two-dimensional bench-

mark problems. The results clearly show the advantage of anisotropic mesh adaptation methods over
classical finite element methods.
2. Semi-phase-field formulation

The semi-phase-field formulation of the Stefan problem is now briefly recalled and the reader is referred

to Belhamadia et al. [1] for a complete discussion. The idea is to start from the enthalpy formulation of the

Stefan problem (1) which can be written as
oH
ot

�r � ðKrT Þ ¼ f ; ð2Þ
where K = Ki, f = fi in Xi and the enthalpy H is defined by
H ¼
qscsT in Xs;

qlLþ qscsT f þ qlclðT � T f Þ in Xl:

�

The semi-phase-field formulation requires the introduction of a step function / defined as
/ ¼ F ðT Þ ¼
0 in Xs; i:e: for T < T f ;

1 in Xl; i:e: for T > T f :

�

This relation is regularized in the interval [Tf � e,Tf + e], where e is a small parameter, so that the resulting

curve Fe is differentiable as illustrated in Fig. 1. The following decomposition is then introduced:
H ¼ H 1 þ qlL/;
where H1 is now the continuous function
H 1 ¼
qscsT in Xs;

qscsT f þ qlclðT � T f Þ in Xl;

�
so that

oH 1

ot
¼

qscs
oT
ot in Xs;

qlcl
oT
ot in Xl:
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Fig. 1. Regularization of phase-field function /.
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Replacing in Eq. (2), a new formulation is obtained which is also equivalent to the Stefan problem. The

semi-phase-field equations are then given by the regularized system
að/Þ oT
ot þ qL o/

ot �r � ðKð/ÞrT Þ ¼ f ð/Þ;
/ ¼ F eðT Þ;

(
ð3Þ
where:
að/Þ ¼ qscs þ / qlcl � qscsð Þ;
Kð/Þ ¼ K s þ /ðK l � K sÞ;
f ð/Þ ¼ fs þ /ðfl � fsÞ:

8><
>:
The variational formulation corresponding to system (3) is straightforward. An Euler implicit scheme is
employed for the time derivatives. Starting from the solution /(n) and T(n) at time t = tn and multiplying

the first equation by a test function vT and the second by a test function v/, the variational formulation

becomes:
R
Xað/

ðnþ1ÞÞ T ðnþ1Þ�T ðnÞ

Dt

� �
vT dXþ

R
X qlL

/ðnþ1Þ�/ðnÞ

Dt

� �
vT dX

þ
R
X Kð/ðnþ1ÞÞrT ðnþ1Þ � rvT dX ¼

R
X f ð/

ðnþ1ÞÞvT dX;R
X /ðnþ1Þ � F eðT ðnþ1ÞÞ
� �

v/ dX ¼ 0:

8>>><
>>>:

ð4Þ
Newton�s method was used for the solution of the above non linear system at each time step. The line-

arization of system (4) is straightforward but requires the solution of huge linear systems, specially for

three-dimensional applications. Direct solvers such as Gaussian elimination are not appropriate since

memory requirements would rapidly exceed the capacity of available computers. Iterative methods are

however more suitable but their convergence is often capricious. Fortunately, in the specific case of
the system (4), a GMRES solver [5] from the PETSc library [6] preconditioned by an incomplete LU

decomposition (ILU) proved to be very efficient when combined with a compressed sparse row method

for the storage of the tangent matrices. The number of Newton�s iterations depends on the time step Dt
but in all applications, 3–6 iterations were necessary to achieve convergence with a residual norm less

than 10�6.
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3. Brief description of the adaptive method

Adaptive remeshing methods are now widely used since it is generally admitted that they are extremely

helpful in order to improve the quality and accuracy of numerical simulations. A complete review of these

techniques is outside the scope of this work and the reader is referred to the pioneering work of George,
Frey and co-workers (see [7–9] and the references therein). One of their major contributions is the introduc-

tion of the notion of mesh anisotropy, i.e., meshes containing elements with large aspect ratio. As shall be

seen in Section 4, anisotropic meshes are particularly efficient for free surfaces problems.

In Belhamadia et al. [1], a hierarchical error estimator was used for the solution of two-dimensional phase

change problems. Its extension to three-dimensional problems is in course but not yet fully implemented. A

more classical approach based on the definition of edge length using a solution dependent metric will thus be

used in this work. This method has been abundantly described in the literature and the reader is referred to

Habashi and co-workers [2–4] and Hecht andMohammadi [10] for a complete presentation. In the following
section, a very brief description of this adaptive method will be outlined.

3.1. Error estimator based on a metric

Starting from a linear approximation uh of a solution u, the error can be written as
e ¼ u� uh;
where h refers to the element length. In the one-dimensional case, it is well known from elementary numer-

ical analysis that the maximum error on an element satisfies
emax ¼
h2

8

d2u
dx2

ðnÞ
for some n in the element. Following the terminology of Habashi et al. [2], the equidistribution of the error

is achieved on a mesh if
h2

8

d2u
dx2

ðxiÞ
����

���� ¼ C ð5Þ
at every node xi of the domain for some prescribed tolerance C. Such a mesh is then called optimized. To

achieve this goal, second order derivatives are approximated at every node xi of the domain and Eq. (5)
determines an element length map. A new mesh satisfying as much as possible the element length map is

then produced and a new solution is computed.

The same analysis is possible for two and three-dimensional problems when working on element edges.

An optimized mesh must satisfy
l2

8

d2u
dv2

ðxiÞ
����

���� ¼ C;
where l is the length of an edge starting at node xi and v is a unit vector tangent to that edge. The tangential

derivative is defined as
d2u
dv2

ðxiÞ ¼ vtAðxiÞv;
where A is the Hessian matrix containing second order derivatives of the unknown solution u. The Hessian

can however be reconstructed from the linear solution uh in a least square sense using the method described

in [1]. The optimized mesh must then satisfy
l2

8
vtAðxiÞv ¼ C: ð6Þ
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If we now consider an edge between vertices xi and xj of length l then the unit tangential vector v is
v ¼ xi � xj

l

and from Eq. (6), the optimized mesh must satisfy
ðxj � xiÞtAðxiÞðxj � xiÞ ¼ C ð7Þ

for every edge of the mesh. Supposing now that A is positive definite, Eq. (7) defines a new (Riemannian)

norm
kvkA ¼ ðvtAðPÞvÞ1=2 ¼ AðPÞv � vð Þ1=2; ð8Þ
linking the notion of length to the finite element error. The condition for an optimized mesh becomes
kxi � xjkA ¼ C ð9Þ

for every edge of the mesh and for some given target edge length C. The choice of the constant C is delicate

and not fully mastered at this time. Too small a value will lead to a very fine mesh and to expensive (but
very accurate) simulations. Consequently, the constant C is often chosen to control the number of elements.

Trial and error may be needed to find the appropriate level, but once chosen, it is fixed for the duration of

the time-dependent simulation.

A new mesh is then obtained from the previous one by trying to satisfy Eq. (7) on every edge. The algo-

rithm proceeds by trying to control the error or more precisely the edge lengths by edge refinement or vertex

suppression. Edge swapping together with vertex displacement are then used to smooth the mesh. This must

of course be done in the respect of the geometrical boundaries of the computational domain which is per-

haps the main difficulty in three-dimensional problems. Special attention must be given to the local oper-
ations on the mesh in the neighborhood of the boundary. For example, edge refinement may introduce a

new node located outside the computational domain. This node has to be projected on the boundary fol-

lowing a technique similar to the one described in Li et al. [11].

This adaptive method based on a new metric is restricted to linear approximations since, otherwise, the

error is no longer related to the Hessian matrix. In this work, a quadratic approximation of the temperature

is used for the computations. This quadratic solution is thus linearly reinterpolated before proceeding to the

error estimation. There is definitely a loss of information in this process. This is why the hierarchical error

estimator, valid for approximations of any degree, is currently being implemented.
3.2. Quality of a tetrahedron

Anisotropic mesh adaptation can produce elongated and nearly degenerate tetrahedra if care is not ta-
ken. This is why the notion of the quality of a tetrahedron must be introduced, but taking into account the

metric (8).

Let a1, a2 and a3 be three vectors issued from a vertex P and let T be the tetrahedron generated by these

vectors with volume V(T) as illustrated in Fig. 2. When working with the Euclidian norm, the ratio
V ðT Þ
1
6
ka1k2ka2k2ka3k2

; ð10Þ
measures the discrepancy between the volume of the tetrahedron and the volume of the same tetrahedron if

the edges ai were perpendicular. The maximum value of this ratio is 1 and it is a good indication of the

regularity of the tetrahedron.
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Fig. 2. Transformation of the local space.
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Working with the Riemannian norm (8) not only redefines the notion of length but also that of volume.

Indeed, since the Hessian matrix A is positive definite, it can be factored as
A ¼ RTCR;
where R is an orthogonal matrix and C a diagonal matrix containing the (positive) eigenvalues of A. Setting
N = RTC1/2R so that NTN = A, the length of v in the new metric becomes
kvkA ¼ ðNTNðPÞv � vÞ1=2 ¼ ðNv � NvÞ1=2 ¼ kNvk2:

The Riemannian norm of a vector v is the Euclidian norm of the transformed vector Nv. Denoting VN(T)

the volume Euclidian norm of the transformed vector Nv
V NðT Þ ¼ ðdetNÞV ðT Þ ¼ ðdetAÞ1=2V ðT Þ;

so that the ratio (10) in the transformed space becomes
V N ðT Þ
1
6
kNa1k2kNa2k2kNa3k2

¼ ðdetAÞ1=2V ðT Þ
1
6
ka1kAka2kAka3kA

: ð11Þ
Here again, this ratio measures the discrepancy between a given tetrahedron and a rectangular tetrahedron,

but using the new metric.

To determine the quality of a tetrahedron, the ratio (11) is computed (and denoted Qi) at each vertex Pi

and the geometric mean is taken
QðT Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2Q3Q4

4
p

: ð12Þ

The quality of the elements must be as far as possible from 0 to avoid degenerate tetrahedra.

3.3. Anisotropic mesh adaptation

The objective of mesh adaptation is, starting from a solution on an initial mesh, to provide a new mesh

with edge length C (see Eq. (9)) everywhere in the domain. The mesh adaptation procedure is based on a

number of local operations on the initial mesh:

� edge refinement;

� edge swapping;

� vertex suppression;

� vertex displacement.

Edge refinement and vertex suppression are used in order to control edge lengths while vertex displace-

ment and edge swapping are used to control the quality of the mesh, i.e., to avoid degenerate tetrahedra. As
shall be seen, this procedure is enough to provide strongly anisotropic meshes.
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In each local operation, a shell S is constructed consisting of elements containing the edge or vertex on

which the local operation acts. This is sometimes quite difficult to obtain a convenient shell, particularly in

the vicinity of the domain boundary. The algorithm then consists in sweeping the vertices and edges repeat-

edly and determine if a given local operation is needed:

� Edge refinement

To decide if an edge between node xi and xj will be halved, its length is computed using the metric of Eq.

(8). This computation is performed at both extremities and averaged to give the value on the edge
ðAðxiÞðxj � xiÞ � ðxj � xiÞÞ1=2 þ ðAðxjÞðxi � xjÞ � ðxi � xjÞÞ1=2

2
: ð13Þ
If this value is larger than the prescribed value C, the edge is halved by creating a new vertex at mid-edge. If

the given edge is on the boundary, the new vertex must be projected on the geometry (CAD) of the domain.

� Vertex suppression

The edges of the mesh are swept and their length computed according to Eq. (13). If the length of an edge

is too small (i.e., the error is small) then one of its vertex is removed creating a ‘‘hole’’ in the mesh. This

‘‘hole’’ is then remeshed by adding edges between some of the nodes (see Fig. 5 in [1] for the two-dimen-

sional case). This can be done in different ways and the precise choice of the nodes to be joined is not impor-
tant at this stage. The process of edge swapping (see next) will correct this choice if needed.

� Edge swapping

This operation is used to improve the quality of the elements defined in Eq. (12). The elements are first

swept and their quality Q(T) is computed. For a given tetrahedron, if Q(T) < Qd, where Qd is a prescribed

minimum value, then the edges of that element are tagged. Then all tagged edges are swept, the shell around

each edge is built and the average quality of the elements in that shell is computed. Then, the shell obtained by

swapping the edge is built and the average quality of the resulting new elements is computed. If the new aver-

age is larger than the initial one, the edge is swapped. Otherwise, the edge is put back in its initial position.
� Vertex displacement

A vertex can be moved inside its shell by considering that the edges form a network of springs whose stiff-

ness is proportional to the edge error. The vertex is then moved by trying to minimize the total energy of the

system. A complete description of the method and minimization technique is given in Habashi et al. [2].

Each time a new vertex is created (edge refinement) or moved, the solution uh and its first and second

order derivatives must be reinterpolated at the vertex location in order to pursue the adaptation process.

If this new vertex is located in some element K, the value of uh is computed using a fifth order Hermite pol-
ynomial as described in Belhamadia et al. [1].

The sequence of edge refinement, edge swapping, vertex suppression and vertex displacement is repeated

8–10 times. The order of the sequence can be modified at will. Experience shows that after this number of

iterations, the meshes no longer evolve significantly and the edges have more or less the prescribed length C.

Minimum and maximum lengths must also be added to avoid regions which are too coarse or too refined

(in the vicinity of a singularity for instance).

3.4. Adaptive strategy for time dependent problems

The overall adaptive strategy is the following:

1. Starting from a solution (Tn, /n) and a mesh Mn at time tn.

2. Solve system (4) on mesh Mn to obtain a first approximation ð~T nþ1
; ~/

nþ1Þ of the solution at time tn+1.

3. Adapt the mesh on the new solution ð~T nþ1
; ~/

nþ1Þ and ðT n;/nÞ to obtain Mnþ1.
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4. Reinterpolate (Tn, /n) on Mnþ1.

5. Solve system (4) on mesh Mnþ1 for (Tn+1, /n+1).

The mesh has to be adapted at each time step in order to preserve the accuracy of the solution. As de-

scribed in Section 3.3, the adaptive strategy requires a linear solution uh and the local operations on the
mesh will modify the mesh in order to attain a given edge length throughout the mesh. A very simple mod-

ification of this strategy allows to take into account the variations of many scalar variables in the adapta-

tion process. It is simply done by computing a weighted average of the different scalar functions.

Determining the weight corresponding to the different functions is a delicate task and trial and error is

sometimes necessary.

A crucial step is the reinterpolation of (Tn,/n) on the mesh Mnþ1. If care is not taken and if the new mesh

is not well adapted to the solution (Tn,/n), this reinterpolation can give very poor results. This is why in step

3, we adapt the mesh on the solution ð~T nþ1
; ~/

nþ1Þ and on ðT n;/nÞ to avoid inaccurate reinterpolation of the
solution at time tn on the mesh Mnþ1. This means that the mesh is adapted on a function u which is a

weighted average of T n;/n; ~T
nþ1

and ~/
nþ1

.

It is also possible to adapt the mesh only on /n and ~/
nþ1

. The freezing front is then well captured but the

temperature is slightly less accurate. However, the number of elements is greatly reduced since the mesh is

refined only in the vicinity of the interface. In the numerical results, we will show examples will be presented

where both strategies were employed.
4. Numerical results

To assess the reliability and accuracy of this numerical method and adaptive strategy, three phase

change problems which are generalizations of examples treated in Belhamadia et al. [1] will be presented.

In the first problem, comparisons between analytical and numerical solutions can be performed since an

analytical solution exists. The last two problems are generalizations of classical two-dimensional test

cases also presented in [1], Nochetto et al. [12] and Beckett et al. [13]: the formation of a cusp and

the oscillating source.
As already mentioned two adaptive strategies can be used to solve these problems. Adaptation can be

done taking into account both T and / or by neglecting the influence of the temperature and adapting only

on /. Obviously, adapting on / only has the major advantage of greatly reducing the number of elements

since they will be concentrated only in the vicinity of the interface. Less accurate temperature prediction are

however expected. Examples where both strategies were employed will be presented in the following section.
4.1. Oscillating sphere

This problem is a generalization of the two-dimensional oscillating cylinder (see [1]). Though the form of

the interface is constant in this problem, it is still interesting and quite difficult. It possesses an analytical

solution allowing comparisons between numerical and analytical solutions are possible.

The computational domain is the box X = [0,5] · [�1,4] · [�1.5,1.5]. The interface has the form of a

half-sphere of radius 1 moving up and down along the plane x = 0 (left-hand side in Fig. 3). Its position

at all times is (0,a(t),0), where a(t) = 0.5 + sin(1.25t). The half period of oscillation is thus 4p/5.
If a proper function f is chosen (using Maple for instance), then the solution of the Stefan problem (1) is

given by:
T ðx; y; z; tÞ ¼ 0:75ðr2 � 1Þ; r < 1;

ð1:5� _aðtÞ sin/Þðr � 1Þ; rP 1;

�
ð14Þ



Fig. 3. Oscillating sphere. Time-evolution of the front over a half period: (a) t = 0; (b) t = 4p/25; (c) t = 8p/25; (d) t = 12p/25;
(e) t = 16p/25; (f) t = 4p/5.
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where r ¼ ðx2 þ ðy � aðtÞÞ2 þ z2Þ1=2; sin/ ¼ ððy � aðtÞÞ=rÞ and _aðtÞ ¼ da
dt ðtÞ. The other parameters are given

in the following table:
Oscillating sphere
qs = ql = 1
 L = 1
cs = cl = 1
 Tf = 0
Ks = Kl = I
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A homogeneous Neumann boundary condition is imposed on the plane x = 0 (where the center of the
sphere is located). The initial and boundary conditions on the other sides are directly obtained from the

analytical solution (14). The half period of oscillation 4p/5 was divided into 100 time steps (Dt = 4p/500)
and the regularization parameter e was set to 0.0125.
Fig. 4. Oscillating sphere. Cross-sections of the mesh: (a) Envelope; (b) z = 0; (c) x = 0; (d) y = 1.5; (e) close up view on x = 0.
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Fig. 3 shows the interface as the sphere goes up and down the wall. The numerical solution (in blue) and

the analytical one (in red) are hardly distinguishable. The initial mesh was structured (.180,000 elements)

but fortunately, at the very first time step, the number of elements is greatly reduced by the adaptive strat-

egy. The elements are concentrated and elongated tangentially to the interface as can be clearly seen in Fig.

4 where cross-sections of the mesh in different planes passing through the sphere are presented. The last
picture in Fig. 4 shows a close up view of the mesh on the interface.

4.2. Formation of a cusp

In this problem, the initial temperature condition is chosen in such a way that the solid phase takes the

form of a mushroom (a cusp). This cusp starts melting, detaches from the plane z = 0 and then completely

disappears. The two-dimensional version of this problem was considered in [1,12,13].
Fig. 5. Cusp. Isosurface / = 0.5 and mesh envelope when adapting on / only: (a) t = 0; (b) t = 0.0625; (c) t = 0.125; (d) t = 0.1875; (e)

t = 0.3125; (f) t = 0.375; (g) t = 0.4375; (h) t = 0.5.
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The computational domain is the box [�2,4] · [0,5] · [�2,4]. The initial temperature is given by:
Fig. 6

elemen

(f) ada
T 0ðx; y; zÞ ¼

0:25ðr2 � 1Þ for r6 1; yP 2;

0:25ðx2 þ z2 � 1Þ for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
> 1; y < 1;

ðr � 1Þ for r > 1; yP 2;

5ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
� 1Þ for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
> 1; y < 1;

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
� 1Þð3� 2 cos pðy � 2ÞÞ for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
> 1; 16 y < 2;

8>>>>>><
>>>>>>:
. Cusp. Cross-sections of / on plane z = 0 at t = 0.25: (a) structured mesh, 105,456 elements; (b) structured mesh, 279,936

ts; (c) structured mesh, 584,016 elements; (d) structured mesh, 2,239,488 elements; (e) adaptation on /, 28,945 elements;

ptation on T and /, 92,973 elements.



Fig. 7. Cusp. (a–f) Adaptation on /, (g–l) adaptation on / and T: (a) mesh envelope at t = 0.125; (b) mesh envelope at t = 0.375;

(c) mesh envelope at t = 0.625; (d) mesh on z = 0 at t = 0.125; (e) mesh on z = 0 at t = 0.375; (f) mesh on z = 0 at t = 0.625; (g) mesh

envelope at t = 0.125; (h) mesh envelope at t = 0.375; (i) mesh envelope at t = 0.625; (j) mesh on z = 0 at t = 0.125; (k) mesh on z = 0 at

t = 0.375; (l) mesh on z = 0 at t = 0.625.
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. This expression is an obvious generalization of the two-dimensional version of the

problem. A homogeneous Neumann condition is imposed on the side y = 0 and the time dependent Dirich-

let boundary condition
Fig. 8.

and T
T ¼ ð1þ tÞT 0ðx; y; zÞ
is enforced on all the other sides. The time step was set to 1/80 and the regularization parameter e to 0.05.

The other parameters are as in the oscillating sphere problem.

Initially the solid phase has the form of a cusp attached to the plane z = 0 and then at t. 0.33, the inter-

face separates from this plane and forms a closed surface. Fig. 5 presents the time evolution of the level set

/ = 0.5 and of the envelope of the mesh. Starting from a uniform mesh, it can be seen that the meshes easily

follow the evolution of the interface. In this figure, the adaptation was performed only on the phase-field

variable /.
Comparisons with structured meshes clearly show the advantage of adaptive methods. Indeed, the

computational domain was divided, respectively, into 105,456, 279,936, 584,016 and 2,239,488 structured

elements. Fig. 6 shows cross-sections of the phase-field function / on the plane z = 0 with the structured

and adapted meshes. The adapted meshes (Fig. 6(e)–(f)) were obtained by adaptation on / and on /
and T. As can be easily seen, the solution on the adapted meshes (with, respectively, 28 945 and

92,973 elements) are much better than even the one obtained on a structured mesh with more than

2 million elements. On the adapted meshes, the interface is very sharp and the phase-field function

/ takes values between 0 and 1 while on the structures meshes, / can take values slightly negative
or larger than 1.
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Finally, Fig. 7 shows a comparison of the meshes obtained when adapting on / only (a–f) and on both /
and T (g–l). The number of elements is greatly reduced if adaptation is performed only on / since the

meshes are almost uniform far from the interface. This can be seen in Fig. 8, where the number of elements

is presented for both strategies. Adapting on / only produces meshes with a minimal number of elements

when the cusp disappears (at t . 0.5). The adaptation on / and T shows however the presence of strong
temperature variation coming from the boundary conditions. Clearly, adaptation on / and T is more likely
Fig. 9. Oscillating source. Interface and mesh envelope adapting on / only: (a) t = 0; (b) t = 1; (c) t = 2; (d) t = 2.5; (e) t = 3; (f) t = 3.5.



Fig. 10. Oscillating source. Cross-section of / and of the on the plane X\{z = 0}: (a) / on plane z = 0 at t = 1; (b) mesh on plane z = 0

at t = 1; (c) / on plane z = 0 at t = 2.5; (d) mesh on plane z = 0 at t = 2.5; (e) / on plane z = 0 at t = 3.5; (f) mesh on plane z = 0 at

t = 3.5.
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to detect any important fluctuation of the temperature which could have consequences on the position of

the interface. This is not the case in this problem since the interface location is the same with both strategies.

4.3. Oscillating source

In this last test case, an oscillating source problem which was also solved in two dimensions in reference

Nochetto et al. [12] is considered. The computational domain is the cube [�1,1] · [�1,1] · [�1,1]. No exact

solution is known for this problem. The initial temperature is given by
T ðx; y; zÞ ¼ 0:1ðx� 0:2Þ

and a Dirichlet boundary condition T(x,y,z) = 0.1(x � 0.2) is enforced on all sides. The time step was set to

0.1 and the regularization parameter e to 0.0025. The other parameters are as in the oscillating sphere prob-
lem. The heat source f for this problem is given by
f ðx; y; z; tÞ ¼ cos
t
5

� �
max 0; 37� 1000 xþ 1

2

� �2

þ y � 1

5

� �2

þ z2
 ! !

:

Here again, this expression is a generalization of the two-dimensional case. The interest of this problem is

that the source term is time-oscillating thus provoking strong changes in the interface position and form as

illustrated in Fig. 9, where the mesh was adapted taking into account only the variations of /.
Fig. 10 shows the evolution of the interface (isosurface / = 0.5) and of the mesh over time on the plane

z = 0. Once again, the interface is very sharp and well captured.
5. Conclusions

An adaptive remeshing method based on a semi-phase-field formulation for the solution of phase change

problems was presented. The adaptive remeshing strategy is based on the definition of a solution dependent

metric related to the discretization error. Two adaptive strategies were used: adapting on / and T or adapt-

ing on / only. The presented numerical examples shows that the numerical method coupled with the adap-

tive strategies provides extremely accurate prediction on both the temperature and interface position for

three-dimensional phase change problems.
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